Fuzzy stability of a cubic functional equation via fixed point technique
نویسندگان
چکیده
* Correspondence: [email protected] Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia Abstract The object of this article is to determine Hyers-Ulam-Rassias stability results concerning the cubic functional equation in fuzzy normed space by using the fixed point method.
منابع مشابه
On the stability of the Pexiderized cubic functional equation in multi-normed spaces
In this paper, we investigate the Hyers-Ulam stability of the orthogonally cubic equation and Pexiderized cubic equation [f(kx+y)+f(kx-y)=g(x+y)+g(x-y)+frac{2}{k}g(kx)-2g(x),]in multi-normed spaces by the direct method and the fixed point method. Moreover, we prove the Hyers-Ulam stability of the $2$-variables cubic equation [ f(2x+y,2z+t)+f(2x-y,2z-t) =2...
متن کاملA FIXED POINT APPROACH TO THE INTUITIONISTIC FUZZY STABILITY OF QUINTIC AND SEXTIC FUNCTIONAL EQUATIONS
The fixed point alternative methods are implemented to giveHyers-Ulam stability for the quintic functional equation $ f(x+3y)- 5f(x+2y) + 10 f(x+y)- 10f(x)+ 5f(x-y) - f(x-2y) = 120f(y)$ and thesextic functional equation $f(x+3y) - 6f(x+2y) + 15 f(x+y)- 20f(x)+15f(x-y) - 6f(x-2y)+f(x-3y) = 720f(y)$ in the setting ofintuitionistic fuzzy normed spaces (IFN-spaces). This methodintroduces a met...
متن کاملA fixed point approach to the Hyers-Ulam stability of an $AQ$ functional equation in probabilistic modular spaces
In this paper, we prove the Hyers-Ulam stability in$beta$-homogeneous probabilistic modular spaces via fixed point method for the functional equation[f(x+ky)+f(x-ky)=f(x+y)+f(x-y)+frac{2(k+1)}{k}f(ky)-2(k+1)f(y)]for fixed integers $k$ with $kneq 0,pm1.$
متن کاملGeneralized hyperstability of the cubic functional equation in ultrametric spaces
In this paper, we present the generalized hyperstability results of cubic functional equation in ultrametric Banach spaces using the fixed point method.
متن کاملFuzzy Stability of a Cubic-quartic Functional Equation: a Fixed Point Approach
Using the fixed point method, we prove the generalized HyersUlam stability of the following cubic-quartic functional equation f(2x+ y) + f(2x− y) = 3f(x+ y) + f(−x− y) + 3f(x− y) + f(y − x) (0.1) + 18f(x) + 6f(−x)− 3f(y)− 3f(−y) in fuzzy Banach spaces.
متن کامل